
 
 
                      CSE142 Sample Self Assessment 1, Summer 2020 
 
1. Expressions.  For each expression in the left-hand column, 
   indicate its value in the right-hand column.  Be sure to list a constant of 
   appropriate type (e.g., 7.0 rather than 7 for a double, Strings in quotes). 
 
        Expression                                   Value 
 
        5 * 6 - (4 + 3) * 2 - 2 * 3            ________________ 
 
        208 / 20 / 4 + 12 / 10.0 + 0.4 * 2     ________________ 
 
        8 - 2 + "8 - 2" + 8 * 2 + 8            ________________ 
 
        4 * 5 % 6 + 297 % 10 + 4 % 8           ________________ 
 
        13 / 2 * 3.0 + 5.5 * 3 / 2             ________________ 
 
2. Parameter Mystery.  Consider the following program. 
 
    public class Mystery { 
        public static void main(String[] args) { 
            String x = "chair"; 
            String y = "notes"; 
            String z = "table"; 
            String meeting = "x"; 
            String notes = y + meeting; 
 
            meeting(x, y, z); 
            meeting(y, meeting, "notes"); 
            meeting(y + z, y + meeting, notes); 
            meeting = "boring"; 
            meeting(meeting, "today", x); 
        } 
 
        public static void meeting(String z, String y, String x) { 
            System.out.println(x + " and " + z + " like " + y); 
        } 
    } 
         
    List below the output produced by this program. 
 
	  



3. If/Else Simulation.  Consider the following method. 
 
        public static void ifElseMystery(int a, int b) { 
            if (a < b && b % 2 == 1) { 
                a = a + 4; 
            } else if (a % 2 == 0) { 
                a++; 
            } 
            if (a < b || a % 2 == 0) { 
                a = a + 2; 
                b--; 
            } else { 
                a = a - 2; 
                b = b + 10; 
            } 
            System.out.println(a + " " + b); 
        } 
 
   For each call below, indicate what output is produced. 
 
        Method Call               Output Produced 
 
        ifElseMystery(6, 5);      _______________ 
 
        ifElseMystery(4, 6);      _______________ 
 
        ifElseMystery(9, 5);      _______________ 
 
        ifElseMystery(3, 6);      _______________ 
 
        ifElseMystery(2, 7);      _______________ 
 
        ifElseMystery(1, 3);      _______________ 
 
4. While Loop Simulation.  Consider the following method: 
 
        public static void mystery(int n) { 
            int x = 0; 
            int y = 0; 
            while (n > 0 && n % 2 == 0) { 
                x++; 
                y = y * 10 + n % 10; 
                n = n / 10; 
            } 
            System.out.println(x + " " + y); 
        } 
 
   For each call below, indicate what output is produced. 
 
        Method Call             Output Produced 
 
        mystery(5);             _______________ 
 
        mystery(8);             _______________ 
 
        mystery(346);           _______________ 
 
        mystery(265408);        _______________ 
 
	  



5. Assertions.  You will identify various assertions as being either 
   always true, never true or sometimes true/sometimes false at various points 
   in program execution.  The comments in the method below indicate the points 
   of interest. 
 
        public static void mystery(Scanner console) { 
            int x = 3; 
            int y = 0; 
            // Point A 
            while (x > 0) { 
                // Point B 
                x = console.nextInt(); 
                y++; 
                if (x > 0) { 
                    x = -x; 
                    // Point C 
                } 
                // Point D 
                x = -x; 
            } 
            // Point E 
            System.out.println("y = " + y); 
        } 
         
   Fill in the table below with the words ALWAYS, NEVER or SOMETIMES. 
 
                    x > 0                 x == 0                y == 0 
            +---------------------+---------------------+---------------------+ 
    Point A |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point B |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point C |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point D |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point E |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
 
	  



6. Debugging. Consider a static method called testFairCoin that takes a console Scanner 
as a parameter and prompts the user for a series of coin flips. The user will input one 
of three words: "heads" if they flip a heads, "tails" if they flip a tails, or "done" to 
stop entering flips. Your method should compute and output the percentage of times the 
user flipped heads. 
 
Below are the interactions produced by two sample calls to testFairCoin (user input bold 
and underlined): 
 
next flip? heads next flip? tails 
next flip? heads next flip? heads 
next flip? tails next flip? tails 
next flip? tails next flip? done 
next flip? done was heads 33.33333333333333% of the time 
was heads 50.0% of the time  
 
In the log on the left, the user enters four flips: two heads and two tails, resulting in 
50 percent heads. Then they enter "done" to stop entering flips. In the log on the right, 
the user enters three flips before quitting: one of which is heads and two of which are 
tails, resulting in 33. 33333333333333% heads. Notice that the coin flips are being 
entered by the user, not generated by the method. You may assume the user enters at least 
one flip before entering "done". 
 
Below is a proposed implementation of testFairCoin: 

public static void testFairCoin(Scanner console) { 
 int heads = 0; 
 int total = 0; 
  
 System.out.print("next flip? "); 
 String flip = console.next(); 

  while (flip.equals("done")) { 
if (flip == "heads") { 

    heads++; 
   } 
   total++; 
 
   System.out.print("next flip? "); 
   flip = console.next(); 
  } 
 
  double pct = 100 * heads / total; 
  System.out.println("was heads " + pct + "% of the time); 
 } 
 
This implementation has one or more bugs. Rewrite the implementation so that it behaves 
as described above. Your rewritten method should retain the same basic approach to the 
problem as the buggy implementation; you should not write an entirely new implementation. 
Write the entire method, including your changes, as your answer. You do not need to 
indicate where you made changes; simply write the final, modified version of the method. 
 
	  



7. Programming.  Write a static method called printSum that takes an 
   integer n and integers low and high as parameters and that produces a series 
   of n integers between low and high inclusive, printing various information 
   about the integers.  The method should construct and use a Random object to 
   generate the numbers.  For example, if you make the following call: 
 
        printSum(15, 4, 8); 
 
   the method should produce three lines of output like the following: 
 
        sum 15 numbers 4 to 8 
        6 + 6 + 4 + 6 + 6 + 8 + 8 + 7 + 8 + 4 + 8 + 7 + 6 + 6 + 8 = 98 
        max = 98 
    
   The first line indicates that the method is going to find the sum of 15 
   numbers between 4 and 8 inclusive (as indicated by the parameters in the 
   call).  The second line shows the 15 numbers randomly selected by the method 
   and their sum.  The third line reports the highest partial sum for the 
   series.  A partial sum is obtained by adding up a limited number of terms 
   starting with the first term (in the example above, a sum of 6 for the first 
   term, a sum of 12 for the first two terms, a sum of 16 for the first three 
   terms, and so on).  In this case, the maximum sum is the overall sum, but 
   that won't always be the case.  For example, if the call instead had been: 
 
        printSum(10, -2, 2); 
 
   the output would look like the following: 
 
        sum 10 numbers -2 to 2 
        -1 + 2 + 2 + 2 + -1 + -1 + -2 + 2 + 0 + -1 = 2 
        max = 5 
 
   Here the maximum sum occurs with the first four numbers that add up to 5. 
   You are to exactly reproduce the format of these logs.  You may assume that 
   n is greater than or equal to 1 and that low is less than or equal to high. 
 
	  



8. Programming.  Write a static method called tallyVotes that takes 
   a console Scanner as a parameter and that prompts the user for a series of 
   votes, reporting and returning the percentage of yes votes.  The user is 
   prompted for a series of responses that are either "y" to indicate yes, "n" 
   to indicate no, or "q" to indicate that the user wants to quit because there 
   are no more votes to tally.  You can assume that the user will always type 
   one of these three responses as a lowercase letter.  For example, below is a 
   sample call on the method: 
 
        Scanner console = new Scanner(System.in); 
        double percentYes = tallyVotes(console); 
 
   This call would produce an interaction like the following (with the user 
   typing "y", "n", or "q"): 
 
        vote? y 
        vote? y 
        vote? n 
        vote? y 
        vote? y 
        vote? y 
        vote? q 
        total votes = 6 
        result = 83.33333333333334% 
 
   Notice that the user is prompted for votes until they quit and then the 
   method produces a line of output showing the total number of votes and a 
   line of output showing the percent of yes votes.  You do not need to round 
   the percentage.  The variable percentYes would be set to 83.33333333333334. 
   You are to exactly reproduce the format of this log.  You may assume that 
   the user enters at least one vote before quitting. 
 
	  



9. Programming.  Write a static method called undouble that takes a 
   string as a parameter and that returns a new string obtained by replacing 
   every pair of repeated adjacent letters with one of that letter.  For 
   example, the String "bookkeeper" has three repeated adjacent letters ("oo", 
   "kk", and "ee"), so undouble("bookkeeper") should return the string 
   "bokeper".  Below are more sample calls: 
 
        Method                   Value        Method                  Value 
         Call                   Returned       Call                  Returned 
        ---------------------------------    --------------------------------- 
        undouble("odegaard")    "odegard"    undouble("oops")        "ops" 
        undouble("baz")         "baz"        undouble("foobar")      "fobar" 
        undouble("mississippi") "misisipi"   undouble("apple")       "aple" 
        undouble("carry")       "cary"       undouble("berry")       "bery" 
        undouble("juggle")      "jugle"      undouble("theses")      "theses" 
        undouble("little")      "litle"      undouble("")            "" 
 
   You may assume that the string is composed entirely of lowercase letters, as 
   in the examples above, and that no letter appears more than two times in a 
   row.  But notice that the method might be passed an empty string, in which 
   case it returns an empty string.  You may use only the string methods 
   included on the cheat sheet.  In particular, you may not use the replace 
   method of the String class to solve this problem. 

 


